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Abstract

We introduce the Gaussian Process Mutual Information algorithm (GP-MI) for sequential global optimization using Gaussian processes. The upper bounds we derive on the cumulative regret for this algorithm improve by an exponential
factor the previously known bounds for algorithms like GP-UCB. We confirm the empirical efficiency of this algorithm on synthetic and real tasks against the natural competitor GP-UCB, and also the Expected Improvement heuristic (EI).
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BACKGROUND

1. Motivations

Examples of Optimization Problems
> Minimization of energy consumption in engineering

> Maximization of benefits in marketing

> Minimization of validation error in machine learning

Related Work
> Experimental design
> Multiarmed bandit
> Active learning
> Bayesian optimization

Fedorov [1972]

Bubeck et al. [2011]
Carpentier et al. [2011
Srinivas et al. [2012

2. Problem Statement

Sequential Optimization

et f: X — R where X C R? is compact and convex. We consider the
oroblem of finding the maximum of f denoted by: f(x™) = max f(x),

reX

via sequential queries f(x1), f(x2), ...
At iteration 1" we choose 271 using the previous noisy observations

YT = {yl, c e
Objective

yr}, where Vit < Tty = f(x) + e and e ~ N(0,77).

The efficiency of a policy is measured via the cumulative regret:

Rr=Y f(z*) = f(x).

t<T

3. Gaussian Processes

Definition
f ~GP(m,k)with meanm : X — R

and kernel £k X x X — RT,
when for all xq,..., 2, we have that

(f(ﬂi'l), SR f(xn)) is a multivariate
Gaussian N ([m(xz;)];, [k(zi, 25)]i5).

Bayesian Inference
Given Y7, the posterior distribution

Prlf | Yr| is a GP with mean pup;
2

i (prediction) and covariance o7.,; (un-
certainty) computed by Bayesian infer-
ence.

ALGORITHM

4. Mutual Information

Information Gain {
The information gain on f at Xy is given by: I7(X7) = ilogdet(l +n Krp).

We define vp= max  Ip(X7p) the maximum information gain by 1" queries.
XTQXI’Xﬂ:T

Empirical Lower Bound

For GPs with bounded variance: Srinivas et al. [2012]

T
2
Ar = /(1) < Ciyr where Cy = .
YT ;Jt(xt)_ 1y where C} g1+ 177
5. GP-MI
Yo < 0

fort=1,2,... do
Compute 1i; and o7 using Bayesian inference

dr(z) Vo (\/0752(37) + Y1 — ﬁ)

Tt <= argmax, ey fe(x) + o(x); Vi < Y1 + 0j (@)
Query at x; and observe ;
end

6. Theorem 7. Corollary

Vo >0and T'> 1, set o = 1093%- > For linear kernel: O(+/dlogT)

> For RBF kernel: O(+/(log T')%*!)
~ For Matérn kernel: O(\/T%logT),

2 .
, where a < Qy‘idQ < 1 and v is the

log(1+772)" Matérn parameter.

Pr {RT < 5\/040{)@4‘4\/&} > 1—5,

where Cl —

8. Impact of 0 on the Regret

2.9
6§ =107
ol —36=10"°
— 66 =10"3
;. ——d=10" Small impact of the value of § on the
g mean average regret with respect to the
~ 1r . . .
£ iteration of the GP-MI algorithm.
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9. Empirical Average Regret
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(a) Generated GP (d = 2)

(b) Generated GP (d=4) (d) Himmelblau

(c) Gaussian mixture
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10. Implementation

Exact Inference for Gaussian likelihood
Numerical complexity in O(T) using the Cholesky sequential updates of the
Osborne [2010]

covariance matrix.

Algorithms for non-Gaussian likelihood
For other likelihood functions (e.g. Laplacian or Student’s t), one can use the
EP algorithm or Monte Carlo sampling. Kuss et al. [2005]

11. Open Questions and Discussion

> Theoretical performance for simple regret
> Include kernel learning procedure
> Calibration of o
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