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Abstract

This paper describes a mistake in the article “Gaussian Process Opti-
mization with Mutual Information”, Proceedings of the 31st International
Conference on Machine Learning, JMLR, pp.253-261, 2014. It appears
that the information given to the algorithm is not sufficient for the main
theorem to hold true. The theoretical guarantees would remain valid in a
setting where the algorithm observes the instantaneous regret instead of
noisy samples of the unknown function.

Introduction. In our paper “Gaussian Process Optimization with Mutual
Information” [1], we analyze an algorithm for sequential global optimization
using Gaussian processes and we aim at proving upper bounds on the cumulative
regret incurred by the algorithm. We found an error in the proof of Lemma 1,
which invalidates the main theorem.

Notations. Let f : X → R be the unknown function to be optimized, which
is a sample from a Gaussian process. Let’s fix x?, x1, . . . , xT ∈ X and the ob-
servations yt = f(xt)+ εt where the noise variables εt are independent Gaussian
noise N (0, σ2). We define the instantaneous regret rt = f(x?)− f(xt) and,

MT =

T∑
t=1

(
rt − E

[
rt | y1, . . . , yt−1

])
.

Erratum. In Lemma 1, we claimed that MT is a Gaussian martingale with
respect to YT = y1, . . . , yT . Even if Mt −Mt−1 is a centered Gaussian con-
ditioned on YT−1, it is wrong to say that MT is a martingale since it is not
measurable with respect to YT .
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Correction and consequences. In order to fix Lemma 1, it is possible to
modify MT and use its natural filtration FT =

{
rt
}
t≤T

instead of YT ,

MT =

T∑
t=1

(
rt − E

[
rt | Ft−1

])
.

Then MT is a Gaussian martingale with respect to FT . Now to adapt the
algorithm for this new quantity it needs to observe rt instead of yt to be able
to compute both the posterior expectation and variance for all x in X :

µt(x) = E
[
f(x) | Ft−1

]
and σ2

t (x) = Var
[
f(x) | Ft−1

]
.

Comments on the experiments. We remark that the experiments per-
formed in [1] are remarkably good in spite of Lemma 1 being unproved. After
having discovered the mistake we were able to build scenarios were the GP-MI
algorithm is overconfident and misses the optimum of f , and therefore incurs a
linear cumulative regret.
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