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Exercise 1. Let λµ > 0 and let X be a Markov chain on {1, 2} with infinitesimal generator

Q =

(
−µ µ
λ −λ

)
1. Write down the forward equations and solve them for finding the transition probabilities πij(t),
i, j ∈ {1, 2}.

2. Calculate Qn and hence find

∞∑
n=0

tn

n!
Qn. Compare your answer with that to previous question.

3. Solve the global balance equation u ·Q = 0 in order to find the steady-state distribution u. Verify
that πij(t)→ uj as t→∞.

Exercise 2 (Waiting queue). We study the behavior of a client queue in front of a service as represented
below:

λ

Client arrivals

µ

Service time

Interarrival times of client are independent identically distributed, and their common distribution is
an exponential one with rate λ (we say that the arrivals follow a Poisson process). The service time has
also an exponential distribution with rate µ. One client is served at a time, and arrivals of clients are
independent of service times.

1. Describe this model with a continuous-time Markov chain.

2. Find a necessary and sufficient condition over the traffic intensity ρ = λ/µ for the existence of a
steady-state distribution for this Markov chain, that you will then compute.

Exercise 3 (Tandem queue). We consider the case of a tandem queue. Clients arrive to a first queue
with interarrival times i.i.d., with an exponential distribution of rate λ, and with service time independent
and exponentially distributed with parameter µ1. After completing service at this first queue, the clients
proceed immediately to a second queue, where service times are also independent and exponentially
distributed with parameter µ2:

λ µ1 µ2

Find a necessary and sufficient condition over the traffic intensities ρ1 = λ/µ1 and ρ2 = λ/µ2 for the
existence of an equilibrium of this system, that you will then describe.
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Exercise 4 (Open networks). We consider an open network of interconnected queues. There are K
stations, and station k ∈ {1, . . . ,K} has a unique service system, such that service times are independent
and exponentially distributed with parameter µk. There are two types of clients queuing at a given
station: (1) those which are fed-back, that is, who have received service in another or the same station
and are rerouted to the given station for more service, and (2) those who enter the network for the
first time. We suppose that exogenous arrivals in station k are such that interarrival times follow an
exponential distribution of parameter λk. Moreover, the re-routing process is made with respect to a
routing matrix R: after a client completes a service in station k, he tosses a (K + 1)-faced dice with

probabilities rk,1, . . . , rk,K , rk = 1 −
∑K

j=1 rk,j with the effect that the client is sent to station j with
probability rk,j or leaves the system with probability rk. We suppose that the successive tosses of the
routing dice of all stations are independent and independent of the exogenous arrival processes and of
all the service times.

1. Describe the continuous-time Markov chain associated with this system, and give its infinitesimal
generator Q.

2. Under which condition, this Markov chain is irreducible? Interpret these conditions in terms of
exogenous suppliance and outlets. In the following, we suppose that the Markov chain always fulfills
these conditions.

3. Show that the following system of equations, that we call traffic equations, has a unique solution
that you will express with respect to the vector λ of exogenous rates and the matrix P:

uk = λk +

K∑
j=1

ujrjk, for k ∈ {1, . . . ,K} .

Supposing that the Markov chain is ergodic, show that this is the average number of customers
entering station k at the steady state.

4. We define the traffic intensity of station k as ρk = uk/µk. Show that if ρk < 1 for all k ∈ {1, . . . ,K},
then the system admits a unique steady-state distribution that you will determine. (Hint: You
can use, after proving it, the fact that if π is a strictly positive distribution, and Q̃ the generator
defined by πnq̃n,n′ = πn′qn′,n then,

∀n
∑
n′ 6=n

q̃n,n′ = −qn,n

is a sufficient condition for π to be the steady-state distribution.)

Exercise 5 (Closed networks). We consider a closed network of interconnected queues, i.e., an open
network as defined in previous exercice verifying that for every station k, λk = rk = 0. In that case, there
is no inlet and no outlet, and therefore the number of customers in the networks remains constant, and
we shall call it N . We follow the same outline than in the previous exercise. In particular, we suppose
that the underlying Markov chain is irreducible.

1. Give the traffic equations of this network and show that there is a unique solution with norm 1.

2. Show that the network has always a steady-state distribution, that you will express using the
solution of traffic equations, and a normalizing constant G(N,K).

3. In practice, it is impossible to compute with a brute-force summation this normalizing constant.
Show that we can still compute it with a dynamic programming algorithm working with a com-
plexity polynomial in N and K (this is hence a pseudo-polynomial algorithm as N is encoding in
binary, contrary to K).
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