Can Small Islands Protect Nearby Coasts from Tsunamis? An active experimental design approach

Themistoklis Stefanakis\(^1\), Emile Contal \(^1\), Nicolas Vayatis\(^1\), Frederic Dias\(^2\), Costas Synolakis\(^3\)

\(^1\) CMLA, ENS Cachan, France
\(^2\) University College Dublin, Ireland
\(^3\) University of Southern California, USA

LITTORAL 12-10-2015, ENS Cachan
Run-up Amplification: Stefanakis et al. (2011)

Local Run-Up Amplification by Resonant Wave Interactions

Themistoklis S. Stefanakis1,2 and Frédéric Dias2,1,*

1CMLA, ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France
2School of Mathematical Sciences, University College of Dublin, Dublin, Ireland

Denys Dutykh3

3Université de Savoie-CNRS Laboratoire de Mathématiques LAMA - UMR 5127 Campus Scientifique 73376 Le Bourget-du-Lac, France

(Received 1 July 2011; published 16 September 2011)

more light on the resonant mechanism ($\omega = 0.4$ s$^{-1}$, $\tan \theta = 0.13$). The first snapshot is taken at the instant
Tsunamis Amplification Phenomenon

2010 Sumatra tsunami and the Mentawai Islands (Hill et al., 2012)
Numerical Simulations

Adaptive mesh grid of the VOLNA solver
Tsunamis Amplification Phenomena

Numerical simulations of a tsunami amplification generated by a conical island

Active experimental design for tsunamis analysis

Emile Contal, CMLA, ENS Cachan, France
Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tan \theta_i$</td>
<td>$0.05 - 0.2$</td>
</tr>
<tr>
<td>$\tan \theta_b$</td>
<td>$0.05 - 0.2$</td>
</tr>
<tr>
<td>d</td>
<td>$0 - 5000m$</td>
</tr>
<tr>
<td>h</td>
<td>$100 - 1000m$</td>
</tr>
<tr>
<td>ω</td>
<td>$0.01 - 0.1 \text{rad/s}$</td>
</tr>
</tbody>
</table>

Five parameters modelling the geometry
Problem Statement

Setup

- d real parameters denoted by d-dimensional vectors $x \in \mathcal{X}$
- $\mathcal{X} \subseteq \mathbb{R}^d$ compact and convex
- Unknown objective function $f(x) \in \mathbb{R}$ for all $x \in \mathcal{X}$
- Noisy measurement $y = f(x) + \epsilon$, where $\epsilon \overset{iid}{\sim} \mathcal{N}(0, \eta^2)$

Goal
Find the parameters x maximizing $f(x)$
Constraints

Challenges

- Expensive evaluations
- Joint optimization of several parameters

Case: run-up

- 5 parameters
- Each simulation takes 2 hours of computation
- A regular grid with 10 values per parameters needs 10^5 points
- The standard approach would take 23 years of computation
Motivating Example: Sequential Optimization

Active experimental design for tsunamis analysis

Emile Contal, CMLA, ENS Cachan, France
Motivating Example: Sequential Optimization

Parameter vs Objective

(x_1, y_1)
(x_2, y_2)
(x_3, y_3)
(x_4, y_4)
(x_5?)

Active experimental design for tsunamis analysis

Emile Contal, CMLA, ENS Cachan, France
Motivating Example: Batch Optimization

Active experimental design for tsunamis analysis
Emile Contal, CMLA, ENS Cachan, France
Objective

Setting

After \(t \) iterations of the sequential query procedure,

- Query the batch \(x_{t+1}^1, \ldots, x_{t+1}^K \) using the information acquired during the previous iterations
- Observe the respective noisy evaluations \(y_{t+1}^1, \ldots, y_{t+1}^K \)

Target

- We want \(\max_{1 \leq t \leq T} \max_{1 \leq k \leq K} f(x_t^k) \xrightarrow{T \to \infty} \max_{x \in X} f(x) \) as fast as possible.
- Exploration vs Exploitation tradeoff

Active experimental design for tsunamis analysis

Emile Contal, CMLA, ENS Cachan, France
Gaussian Processes: Framework

Definition

\(f \sim \mathcal{GP}(m, k) \), with mean function \(m : \mathcal{X} \rightarrow \mathbb{R} \) and covariance function \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^+ \), when for all \(x_1, \ldots, x_n \),

\[
(f(x_1), \ldots, f(x_n)) \sim \mathcal{N}(\mu, K),
\]

with \(\mu[x_i] = m(x_i) \) and \(K[x_i, x_j] = k(x_i, x_j) \).

Probabilistic smoothness assumption

- Nearby locations are highly correlated
- Large local variations have low probability

Example of covariance function

- Squared Exponential RBF: \(k(x, y) = \exp(-\frac{\|x-y\|^2}{2\ell^2}) \)
- Rational Quadratic: \(k(x, y) = (1 + \frac{\|x-y\|^2}{2\alpha\ell^2})^{-\alpha} \)
Gaussian Processes: Examples

1D Gaussian Processes with different covariance functions

Active experimental design for tsunamis analysis
Emile Contal, CMLA, ENS Cachan, France
Gaussian Process Interpolation

Bayesian Inference (Rasmussen and Williams, 2006)

At iteration t, with observations Y_t for the query points X_t, the posterior mean and variances are given at all point x in the search space by:

$$
\mu_t(x) := \mathbb{E}[f(x) | X_t, Y_t] = k_t(x) \mathbf{C}_t^{-1} Y_t
$$

(1)

$$
\sigma^2_t(x) := \nabla[f(x) | X_t, Y_t] = k(x, x) - k_t(x) \mathbf{C}_t^{-1} k_t(x),
$$

(2)

where $\mathbf{C}_t = \mathbf{K}_t + \eta^2 \mathbf{I}$ and $\mathbf{K}_t = [k(x_t, x_{t'})]_{x_t, x_{t'} \in X_t}$.

Interpretation

- posterior mean μ_t: prediction
- posterior variance σ^2_t: uncertainty
Gaussian Process Interpolation: Example

Active experimental design for tsunamis analysis
Emile Contal, CMLA, ENS Cachan, France
Upper and Lower Confidence Bounds

Definition
Fix $0 < \delta < 1$,

\[f_t^+(x) = \mu_t(x) + \sqrt{\beta_t \sigma_t^2(x)} \]
\[f_t^-(x) = \mu_t(x) - \sqrt{\beta_t \sigma_t^2(x)} \]

with $\beta_t = \mathcal{O}(\log \frac{t}{\delta})$ defined in Srinivas et al. (2012)

Property

\[\forall x \in \mathcal{X}, \forall t \geq 1, \]
\[f(x) \in [f_t^-(x), f_t^+(x)] \text{ holds with probability at least } 1 - \delta \]
Relevant Region \mathcal{R}_t
The GP-UCB-PE algorithm (Contal et al., 2013)

\[x_t^1 = ? \]
\[x_t^2 = ? \]
\[x_t^3 = ? \]
The GP-UCB-PE algorithm (Contal et al., 2013)

\[x_t^1 = \arg\max_{x \in \mathcal{R}_t} f_t^+(x) \]

\[x_t^2 = ? \]

\[x_t^3 = ? \]
The GP-UCB-PE algorithm (Contal et al., 2013)

\[x_t^1 = \arg\max_{x \in \mathcal{R}_t} f_t^+(x) \]

\[x_t^2 = ? \]

\[x_t^3 = ? \]
The GP-UCB-PE algorithm (Contal et al., 2013)

\[x_t^1 = \arg\max_{x \in \mathcal{R}_t} f_t^+(x) \]
\[x_t^2 = \arg\max_{x \in \mathcal{R}_t} \sigma_t^{(1)}(x) \]
\[x_t^3 = ? \]
The GP-UCB-PE algorithm (Contal et al., 2013)

\[x_t^1 = \arg\max_{x \in \mathcal{R}_t} f_t^+(x) \]
\[x_t^2 = \arg\max_{x \in \mathcal{R}_t} \sigma_t^{(1)}(x) \]
\[x_t^3 = ? \]
The GP-UCB-PE algorithm (Contal et al., 2013)

\[x_t^1 = \arg\max_{x \in \mathcal{R}_t} f_t^+(x) \]
\[x_t^2 = \arg\max_{x \in \mathcal{R}_t} \sigma_t^{(1)}(x) \]
\[x_t^3 = \arg\max_{x \in \mathcal{R}_t} \sigma_t^{(2)}(x) \]
Theoretical Analysis

Theorem (Contal et al. (2013))

With $f \sim \mathcal{GP}(0, k)$, with probability at least $1 - \delta$:

$$\max_{x \in X} f(x) - \max_{1 \leq t \leq T, 1 \leq k \leq K} f(x_t^k) = O\left(\sqrt{\frac{\gamma_{TK}}{TK}}\right)$$

Information theory

γ_{TK} is the maximum information gain about f obtainable by a sequence of TK queries.

- For linear covariance, $\gamma_{TK} = O(d \log TK)$
- For Squared Exponential covariance, $\gamma_{TK} = O\left((\log TK)^{d+1}\right)$
Batch vs Sequential

Complexity

If n is the number of training points,

Sequential: $n \text{Cost}(f) + n \text{Cost}(\text{GP})$

Batch: $\frac{n}{K} \text{Cost}(f) + n \text{Cost}(\text{GP})$

With exact inference, $\text{Cost}(\text{GP}) = \mathcal{O}(n^2)$.

Impact on the convergence speed

Take $K \ll T$, then for equivalent $\text{Cost}(f)$ the improvement of the parallel strategy over the sequential one is \sqrt{K} with respect to the convergence speed.
Histogram of the run-up amplification

Active experimental design for tsunamis analysis

Emile Contal, CMLA, ENS Cachan, France
Local sensitivity of the maximum run-up amplification

(a) RA vs. $\tan \theta_i$ and $\tan \theta_b$

(b) h vs. time

(c) RA vs. d

(d) ω vs. time

Active experimental design for tsunamis analysis

Emile Contal, CMLA, ENS Cachan, France

