CMLA

Articles

2016

Emile Contal:
Statistical Learning Approaches for Global Optimization
PhD
Emile Contal, Nicolas Vayatis:
Stochastic Process Bandits: Upper Confidence Bounds Algorithms via Generic Chaining
preprint
Julien Audiffren, Emile Contal:
Preprocessing the Nintendo Wii Board Signal to derive more accurate descriptors of statokinesigrams
Sensors
Dripta Sarkar, Emile Contal, Nicolas Vayatis, Frederic Dias:
Prediction and Optimization of Wave Energy Converter Arrays using a Machine Learning Approach
Renewable Energy 2016
Cédric Malherbe, Emile Contal, Nicolas Vayatis:
A Ranking Approach to Global Optimization
ICML 2016

2015

Emile Contal, Cédric Malherbe, Nicolas Vayatis:
Optimization for Gaussian Processes via Chaining
NIPS Workshop on Bayesian Optimization
Dripta Sarkar, Emile Contal, Nicolas Vayatis, Frederic Dias:
A Machine Learning Approach to the Analysis of Wave Energy Converters
OMAE 2015

2014

Themistoklis Stefanakis, Emile Contal, Nicolas Vayatis, Frederic Dias, Costas Synolakis:
Can small islands protect nearby coasts from tsunamis? An active experimental design approach
Royal Society A 2014
Emile Contal, Vianney Perchet, Nicolas Vayatis:
Gaussian Process Optimization with Mutual Information.
ICML 2014 - Erratum

2013

Emile Contal, David Buffoni, Alexandre Robicquet, Nicolas Vayatis:
Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration.
ECML 2013

2012

Olivier Delalleau, Emile Contal, Eric Thibodeau-Laufer, Raul Chandias Ferrari, Yoshua Bengio, Frank Zhang:
Beyond Skill Rating: Advanced Matchmaking in Ghost Recon Online.
IEEE Transactions on Computational Intelligence and AI in Games 2012