doc: gp_downdate
Posterior
and
given 
Syntax
[mu, sigma2] = gp_downdate(Ktt, Yt, i, BayesInv)
[mu, sigma2] = gp_downdate(Ktt, Yt, i, BayesInv, Ht)
Arguments
- Ktt kernel matrix (nt, nt) between the points of Xt
- Yt vector (nt, 1) of observations
- i indice of removed observation
- BayesInv struct array returned by gp_inf(Ht, Ktt, Yt, noise)
- Ht matrix (nt, b) of basis data as returned by basis_cst(Xt)
Outputs
- mu scalar (1,1) posterior mean
![$E[f(x_i) \mid X_t\setminus x_i, Y_t \setminus y_i]$](gp_downdate_eq82076.png)
- sigma2 scalar (1,1) posterior variance
![$V[f(x_i) \mid X_t\setminus x_i, Y_t \setminus y_i]$](gp_downdate_eq73779.png)
See also
gp_pred | gp_loolik