Home
Publications
Software
Teaching
Presentations
Teaching
M1 Math ENS Cachan - Apprentissage statistique
DM.
Implémentation de quelques algorithmes de classification.
TD9.
Maximum Likelihood.
TD8.
Data-Dependant Partitioning.
TD7.
Applications of Stone's Theorem.
TD6.
Consistency of Voting Classifiers.
TD5.
The Nearest Neighbor Rule.
TD4.
Online-to-Batch & Probabilistic Framework.
TD3.
The Perceptron Algorithm and Bregman Divergence.
TD2.
Online Learning and Game Theory.
TD1.
Concentration inequalities.
MPRI 1.24 - Probabilistic aspects of computer science
Webpage
-
Lecture materials
TD6.
Reachability Objectives in MDP & Probabilistic Automata.
TD5.
MDP: Modelling and finite-horizon objectives.
TD4.
Continuous-time Markov chains.
TD3.
Random walks and applications.
TD2.
Markov chains in the long run.
TD1.
Discrete-time Renewal Processes and First Markov Chains.
L3 Info ENS Cachan - Projet Programmation 2
Partie 3.
Améliorations et Programmation Avancée.
Partie 2.
Diversifications et Programmation Orienté Objet.
Partie 1.
Un Tower Defense simplifié, Interface Graphique.
Introduction.
Le Langage Scala.
Previous years
2013-2014
-
2014-2015